Ergodic Theory - Week 12

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Entropy

In all the following exercises, we assume that we have a Borel probability space (X, \mathcal{B}, μ) and ξ, η will be partitions of \mathcal{B} .

- **P1.** Prove the following properties of entropy of partitions:
 - (a) If ξ is a finite partition with r atoms, then $H(\xi) \leq \log r$, with equality if and only if $\mu(A) = 1/r$ for any $A \in \xi$.
 - **(b)** $H(\xi \vee \eta) = H(\eta) + H(\xi \mid \eta).$
 - (c) $H(\xi) \ge H(\xi \mid \eta)$.
 - (d) Two partitions ξ and η are independent if and only if $H(\xi \mid \eta) = H(\xi)$.

Hint: In several places, you will need to use Jensen's inequality.

- **P2.** Prove that $d(\xi, \eta) = H(\xi \mid \eta) + H(\eta \mid \xi)$ defines a metric in the space of finite partitions (up to sets of measure 0).
- **P3.** Prove that for every $\epsilon > 0$ there is $\delta > 0$ such that $\xi = \{A_1, A_2, \dots, A_r\}$ and $\eta = \{B_1, B_2, \dots, B_r\}$ are two finite partitions with $\sum_{i=1}^r \mu(A_i \Delta B_i) < \delta$, then $d(\xi, \eta) < \epsilon$, where d is the metric defined in Problem 2.

Hint: Consider the partition $\gamma = \{A_i \cap B_j\}_{i \neq j} \cup \{\bigcup_{i=1}^r A_i \cap B_i\}$ and show that $H(\xi \mid \eta) \leq H(\gamma) < \varepsilon/2$ for δ small enough.